• No results
Quick Links
  • University
    • Studies
    • Campus
    • Research
    • University
    • Continuing education
  • Faculties
    • Theology
    • Law
    • Management, Economics and Social sciences
    • Humanities
    • Education
    • Science and Medicine
    • Interfaculty
  • You are
    • Prospective students
    • Students
    • Medias
    • Researchers
    • Employees
    • PhD students
  • Ressources
    • Directory
    • Maps/Orientation
    • Libraries
    • Webmail
    • Course catalogue
    • MyUnifr
  • EN
  • FR
  • DE
  • Research Research
  • Bio-Inspired Materials Bio-Inspired Materials
  • No results
EN
  • EN
  • FR
  • DE

Bioinspired Materials NCCR

A National Center of Competence in Research

  • About us
    • Back
    • Mission and Vision
    • Organization
    • People
      • Back
      • Executive board
      • Management
      • Research groups
      • External Advisory Board
      • People A-Z
    • Ethics charter
    • Contact
    • Open positions
    • Alumni
  • Research
    • Back
    • Module 1: Mechanically responsive materials
    • Module 2: Photonic materials
    • Module 3: Bio-interfaces across scales
    • Translation projects
    • Other research projects
    • Research stories
    • Publications & Datasets
      • Back
      • Datasets
    • Good scientific practices
    • Completed projects
      • Back
      • Module 1: Mechanically responsive materials
      • Module 2: Responsive materials by self-assembly
      • Module 3: Interactions of responsive materials with cells
      • Module 4: Dynamics of interacting cell-material systems
      • Other projects
    • Open Science
      • Back
      • Open Access
      • Open Research Data
      • Copyright and licenses
  • Equal opportunities
    • Back
    • Funding programs
      • Back
      • Postdoctoral fellowship for Women in Science
    • Mentoring opportunities
    • Childcare
      • Back
      • Daycare subsidy
    • Success stories
    • Gender equality policy
    • #NCCRwomen
  • Education
    • Back
    • Elementary and high school
    • A researcher in my class
    • Summer Internships for Undergraduates
      • Back
      • URI application process
      • Activities & Networking
      • Testimonials
      • Publications - summer internship program
      • Success stories
      • FAQ
      • Alumni
    • Doctoral training
      • Back
      • Funding opportunities
      • Transferable skills
    • Postdoctoral training
      • Back
      • Postdoctoral fellowship for Women in Science
  • Innovation/TechTransfer
    • Back
    • Proof-of-concept grant
      • Back
      • Monodisperse microcapsules
      • Sensing antibiotics
      • Business Development for Malaria Diagnostics
      • A DNA origami nanosensor based point of care device
    • Industrial Associates Program
    • Idea disclosure
    • Startups
  • News & events
    • Back
    • News
    • Seminars
    • Roundtables
    • Agenda
  • Media
    • Back
    • Documents
    • Social Media
    • Stories
    • FAQ
  • Research
  • Module 1: Mechanically responsive materials

Research Research

  • Module 1: Mechanically responsive materials
  • Module 2: Photonic materials
  • Module 3: Bio-interfaces across scales
  • Translation projects
  • Other research projects
  • Research stories
  • Publications & Datasets
    • Datasets
  • Good scientific practices
  • Completed projects
    • Module 1: Mechanically responsive materials
    • Module 2: Responsive materials by self-assembly
    • Module 3: Interactions of responsive materials with cells
    • Module 4: Dynamics of interacting cell-material systems
    • Other projects
  • Open Science
    • Open Access
    • Open Research Data
    • Copyright and licenses

Next generation of polymeric nanovaccine for brain cancer immunotherapy

This WINS fellowship aims to study a new gene-based strategy for cancer immunotherapy developing an in situ cancer nanovaccine that will stimulate danger sensors in glioblastoma cells leading to immunogenic cancer cell death

Main investigator

SOUSA_Flavia.jpg
SOUSA Flavia

Read more

Involved people

alkefink.png
FINK Alke

Read more

  • Related publications
      Immunostimulatory nanoparticles delivering cytokines as a novel cancer nanoadjuvant to empower glioblastoma immunotherapy
      Sousa Flávia, Lee Henry, Almeida Mauro, Bazzoni Amelie, Rothen-Rutishauser Barbara, Petri-Fink Alke
      Drug Delivery and Translational Research (2023)

      default picture

       

      Engineering nanomaterials for glioblastoma nanovaccination
      Hameedat Fatima, Mendes Bárbara B., Conniot João, Di Filippo Leonardo D., Chorilli Marlus, Schroeder Avi, Conde João, Sousa Flávia
      Nature Reviews Materials (2024)

       

     
  • Related projects as project manager

      Projects of FINK Alke

      NanoRoomba: Cellular uptake and durotaxis on ‘’soft and rigid‘’ nanoparticle carpet

      Stimulation of cellular endocytosis for sensing and enhancing nanoparticle uptake

      Magneto-responsive cell culture substrates that can be modulated in situ

      Intelligent nanomaterials to reveal and control their behavior in complex media, at biointerface and in cells

     
ABOUT US
  • Mission and Vision
  • Organization
  • People
  • Ethics charter
  • Contact
  • Open positions
  • Alumni
EQUAL OPPORTUNITIES
  • Funding programs
  • Mentoring opportunities
  • Childcare
  • Success stories
  • Gender equality policy
  • #NCCRwomen
RESEARCH
  • Module 1: Mechanically responsive materials
  • Module 2: Photonic materials
  • Module 3: Bio-interfaces across scales
  • Translation projects
  • Other research projects
  • Research stories
  • Publications & Datasets
  • Good scientific practices
  • Completed projects
  • Open Science
INNOVATION & TECHNOLOGY TRANSFER
  • Proof-of-concept grant
  • Industrial Associates Program
  • Idea disclosure
  • Startups
EDUCATION
  • Elementary and high school
  • A researcher in my class
  • Summer Internships for Undergraduates
  • Doctoral training
  • Postdoctoral training
NEWS & EVENTS
  • News
  • Seminars
  • Roundtables
  • Agenda
MEDIA
  • Documents
  • Social Media
  • Stories
  • FAQ
Contact

NCCR Bio-Inspired Materials

University of Fribourg

Chemin des Verdiers 4

CH-1700 Fribourg

+41 26 300 9266

myriam.marano@unifr.ch

bioinspired-materials.ch

© University of Fribourg | Impressum | Legal Notice | Emergency numbers